Data Sources

By Ignacio Ciampitti, Ajay Sharda, Luciana Nieto and Sylvester Badua

TECH TOOLSHED

GOAL	This section provides an overview of the data types – collected from a variety of sources – currently used for decision making in commercial agriculture.
VALUE STATEMENT	The data sources presented in this summary identify freely downloadable (provided by federal agencies) or farmer-driven data sources. In this section, the farmer will learn how to identify and access useful farming data sources with the goal of using the data for daily farm-related, decision-making processes, such as when, where and how to plant (e.g., seeding rates); when and how to apply inputs (e.g., fertilizers, herbicides and fungicides); and when to harvest (e.g., timely harvest for susceptible areas).

Ag Data Source 101

Table 1. Overviewfrom the data types –collected from a varietyof sources – currently usedfor decision making incommercial agriculture.The data source can bedissected into agronomicand machinery types.

This data source could be divided into agronomic data and machinery data. The agronomic data module can be subdivided as related to its source into Soils, Crops, Weather and Remote Sensing components. The machinery data module can be segmented into Machinery Operations and Machinery Applications.

Туре	Data Types	Sources	Data Timing	Application
	Soil	SSURGO	Off-season	Know different soil type
		Grid sampling	Off-season	Soil test, physical and chemical properties
		Water sensors	In- or off-season	Measure the water content
		VERIS		Mapping soil characteristics
ΜY	Crops	Scouting	In- or off-season	Scouting for weeds, diseases, insects
AGRONO	Weather	Mesonet	In- or off-season	Daily weather data
		NOAA	Off-season	Historical weather data
	Remote sensing	Satellite	In-season	Built the vegetation indices to track vegetation health status
		LIDAR	Off-season	Mapping soil topography
		UAV	In- or off-season	Built the vegetation indices to track vegetation health status
MACHINERY	Crops	Grain moisture sensors	Harvest	Moisture for yield correction
		Yield monitor	Harvest	Real-time yield and combine operating parameters
		Planting monitor	Seeding	Real-time seeding and planter operating parameters
		Liquid and dry application	Liquid and dry product	Real-time application and machine operating parameters
		Other sensors		

Agronomic Data Sources

Soils

Soil Type: This source identifies data layers related to soil features, soil type and characterization of soil factors and soil nutrient testing.

The Soil Survey Geographic Database, SSURGO, provides detailed information on soil properties and qualities useful for planning and management of soil (Figure 1).

Links:

https://datagateway.nrcs.usda.gov/

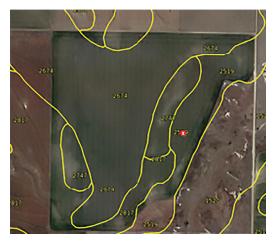


Figure 1. Visualization of soil features – SSURGO database.

Crops

This source identifies data layers related to crop features, plant traits (e.g., stand counts, plant height and size), identification of pests (e.g., crop scouting) and characterization of plant nutrient status (e.g., plant nutrient analysis).

Crop scouting is related to the process of assessing pest incidence and crop performance, estimate economic loss and implement a corrective practice.

National Agricultural Statistics Service (NASS) Database:

NASS database provides agriculture survey and census data published by the U.S. Department of Agriculture. The data can be customized by crop, state, district and county.

Links: https://quickstats.nass.usda.gov

Weather and Climate

Climate data provides long-term atmospheric and weather conditions, such as precipitation and temperature.

Example of climate data related to crop growth:

a) Growing degree-days; b) Drought index; and c) Climate normals. Available sources of climate data: PRISM data (Figure 2), NCDC and MRCC.

Links: https://www.weather.gov/

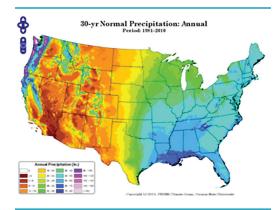
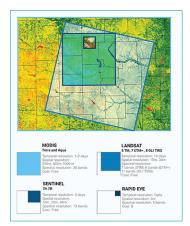
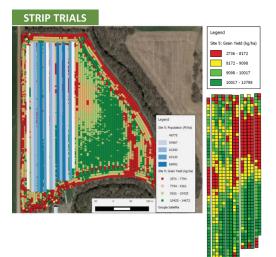



Figure 2. Normal Precipitation, PRISM Climate Group, Oregon State University.

Remote Sensing Imagery

Remote sensing is a technique to obtain remotely sensed data with satellites, airplanes, unmanned aerial vehicles (UAV) platforms and field sensors. From the satellite aspect, there are several satellites with different spatial, temporal and spectral resolution, such as MODIS, Landsat, Sentinel, Rapid Eye, among others (Figure 3).


Figure 3. Satellite data sources, temporal, spatial and spectral resolutions.

Machinery Data Sources

Machinery Operation

This data source refers to how a machine performs during a specific operation, for example, data like fuel consumption, speed, etc.

During field operation of machine systems, sensors are available for monitoring level/quantity of liquid and dry products in the tanks, flow rate, moisture, application pressure and other physical properties of dry and liquid products; grain quantity in the seed carts during seeding, grain levels in the bin and grain quality sensors during harvesting. The sensors help maintain accurate flow of liquid and dry products and maintain adequate system requirements, such as air pressure in the pneumatic spreaders to deliver products at the point of application and to monitor grain status in combines. Performance and logistics data of both tractors and precision machinery can be captured using numerous CAN-BUS data. As an example, tractor and machinery CAN-BUS can provide performance data like fuel consumption, slip, engine load and input application rates, etc.

As-applied Application Data

This data source provides a lot of insight on state of machine efficiency and accuracy during input application, harvesting, etc. It has data ranging from seeding rate prescription, row unit ride quality to downforce application. This data is brought in through farm management information systems to analyze operating efficiencies at a later stage.

Yield data is very important in building datasets to make decisions in future inputs (Figure 4). Yield maps allow producers to overlay harvest data with hybrid/variety maps, nutrient maps and soil maps to determine yield performance. Similar datasets are generated by other machine systems, including dry fertilizer applications, precision irrigation systems and others. Overall, all the data helps producers develop knowledge-based decisions for future crop inputs.

Telematics and wireless data transfer have

increasingly become more common for all agricultural operations. This allows producers to upload as-applied data to their home computer or service provider via the Internet in real time. This technology is also being utilized for remote diagnostics, troubleshooting and to monitor the equipment's operating parameters.

Figure 4. Yield map. ▶

4 TECH TOOLSHED DATA SOURCES

Table 2. Sensor optionsfor data collection.

MACHINE OPERATION	OBSERVATION	SENSOR TYPE
Soil preparation	Soil EC, soil organic matter	Infrared
and pre-planting	Field topography	GPS
	Seed metering unit	Electric motors with encoders
	Seed singulation	Optical sensor
Planting	Row unit acceleration	Accelerometer
	Soil moisture and organic matter	Smart firmer (Infrared sensor)
	Planting state for coverage	Potentiometers
	Gauge wheel load	Load cell
	Downforce implementation	Hydraulic pressure sensor
	Speed	GPS or radar sensors
	Geo-positioning	GPS
	Grain level in the tank	Ultrasonic sensor
	Liquid flow rate	Flow meter
	Liquid pressure	Pressure transducer
	Speed and geo-positioning	GPS
Liquid and	Boom height	Ultrasonic sensor
dry application	Liquid level	
	Air pressure	Pressure transducers
	Speed of spinner on spreaders	Proximity sensors
	Speed of conveyor metering dry products	Encoders
In-season crop health	Crop vigor	Multi-spectral, broadband color infrared sensors
	Grain flow	Load cell, hall effect and optical senso
	Header height	Potentiometers
Harvesting	Grain moisture	Capacitate sensor
	Speed and geo-positioning	GPS
	Grain bin level	Ultrasonic
Other	Weather	Wind speed, wind direction, temperature and humidity sensors

For more information and links to additional resources, visit www.unitedsoybean.org/techtoolshed

Technical editing for this publication was led by Ignacio Ciampitti, Ph.D., Ajay Sharda, Ph.D., Luciana Nieto and Sylvester Badua, Kansas State University. The United Soybean Board neither recommends nor discourages the implementation of any advice contained herein, and is not liable for the use or misuse of the information provided. ©2018 United Soybean Board.

