
For data users to understand how errors during data collection or processing (including field study setup) may affect 

any analysis results and, ultimately, decision-making processes. Information regarding options for reducing errors 

through post-processing are also discussed.

Using accurate data when conducting field analyses or developing prescription maps is critical for ensuring positive 

future on-farm decisions and recommendations. For example, using historical yield data containing errors to drive 

nitrogen management decisions could lead to artificially high or low fertilizer recommendations, resulting in reduced 

yields or profits in subsequent years. Further, how the quality of those datasets might affect future decisions or 

analysis results is of primary concern as we continue down the path of data-driven agriculture. 
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VALUE STATEMENT

Yield Monitor 
Data Quality

Georeferenced yield monitor data is considered one of the 
most valuable datasets collected throughout the growing 
season. Over the course of two decades, yield monitor data 
has progressed from simple printed map creation to an 
input for prescription map development to a dependent 
variable in on-farm research analyses. The effects  
of yield monitor errors can be extreme in some cases. 
Without visual inspection of the final yield map, errors 
may propagate through the analysis process and affect  
product prescription maps if they are used in this fashion.

Errors can negatively affect the crop management system 
when yield data is used for developing prescription maps 
for nutrients. In Figure 1, yield errors are visible along the 
headland areas where the header sensor was not engaged 
(indicating the system was not harvesting) in the raw yield 
data map. Those errors were removed via an automated 
post-processing software, Yield Editor, available free  
from the U.S. Department of Agriculture (USDA), shown  
in the clean yield data map (USDA, 2014). In both cases,  
N prescription (Rx) maps were generated (using the UNL 
nitrogen algorithm; Shapiro et al., 2008) where raw and 
cleaned yield data were used as the ‘expected yield’ 
inputs. In this worst-case scenario, certain areas of the 
field would have received lower nitrogen rates – in some 
cases over 75 lbs. N/ac less – with the raw yield data 
compared to the clean yield data. In the end, if some  
type of post-processing (either manually or automatically) 
had not been completed, errors like these could have 

affected future management and may have propagated 
errors into future growing seasons. Specifically related  
to yield monitor data, several options exist for post-
processing errors using different software as discussed  
in Nebraska Extension Circular: EC2005 (Luck et al., 2015).

Data Integrity
By Joe Luck, Laura Thompson, Yeyin Shi and Nathan Mueller 

Figure 1. Illustration  
of how errors in yield data  
may propagate through  
to prescription maps when  
raw yield data (top) are  
used versus cleaned  
yield data (bottom).
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Remotely-
Sensed Data

Experimental 
Design and 
Analysis 
of Field Studies

As mentioned in the Data Sources section, remote-sensing 
data, including imagery obtained from satellites, manned 
aircrafts, drones and other data from canopy sensors 
mounted on ground implements have been providing 
useful information for growers for decades. Data types 
include imagery and point measurements. Point 
measurements can sometimes be collected by active 
reflectance sensors which have their own modulated 
light sources and independent with environmental lighting. 
Imagery are usually collected by passive reflectance 
sensors or cameras which measure the canopy reflectance 
of sunlight. Because of this, measurements from passive 
sensors are subject to environmental lighting change. 
Stronger incident light results in larger measurement 
values and vice versa. 

The way to compensate the environmental lighting change 
on the measurements is to calibrate the sensor data using 
either calibration sensors or calibration targets. 
We recommend:
■   Collecting data on sunny days with constant lighting 

conditions. For satellite or manned aircraft images, a cloudy 
day would result in cloud cover in the image (Figure 2)

■  Use the same sensor/camera for a field throughout the 
season if possible 

■  Choose the multispectral camera with a downwelling light 
sensor (DLS) or an incident light sensor (ILS) installed at 
the top of the drone to monitor the environmental lighting, 
and use the environmental lighting data to correct 
the values in the final map generated

■  Set up or select constant objects or calibration targets 
in or near the field for each data collection as 
references for post calibration

Some other considerations are image spatial resolution 
and the quality of image stitching. Image spatial 
resolution usually needs to be fine enough to see the 
details of interest. For early season stand count, high 
spatial resolution is required, while for in-season nitrogen 
application, lower spatial resolution can be used as long 
as it is enough for the implement’s application resolution.  
Assessment of data and imagery post-collection typically 
must be done visually which may be needed to understand 
field variability. Any distortion or misalignment can be 
discovered which is due to errors in flight path planning 
and/or image stitching in post processing.

Appropriate statistical design of trials for on-farm 
research is a critical step in the planning and data 
collection process. Key elements of an appropriately 
designed field study include randomization, replication 
and blocking of the treatments included. In general, 
the number of replications and, thus, the area of the field 
dedicated to each treatment, should be similar among 
those treatments. Figure 3 illustrates three seeding rates 
applied across a field which were replicated in six blocks. 

Notice that among the blocks, the seeding rates are 
randomized. In other words, the order is not consistent 
across each block. Mixing up the order of the seeding-
rate treatments reduces the impact of any geographic 
differences that may occur across the field (e.g., yield 
variability due to constant slope). 

Regarding treatment selection, care should be taken to 
choose large enough differences in target application rates 

Figure 2. Example of how poor lighting conditions resulting 
from cloud cover may affect aerial remote-sensed imagery.

August 31
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such that a response from these treatments will be seen. 
For the study in Figure 3, 4 ksds/ac* was the difference 
between treatments selected to ensure the planter could 
generate this separation and greater effect from seed rates 
could be noticed. Further scrutiny of this example study  
data shows how poor data quality may affect the outcome  
of an analysis for which seeding rate was optimal for this 
field. Table 1 shows average yield values for each treatment 
from the raw yield dataset as well as a dataset (clean)  
once errors were removed. Differences in both yield  

averages and standard deviation of yield are evident.  
More importantly, once marginal return was calculated  
for the clean yield data, the results indicate the lower  
seeding rate was most economical.

Viewing individual treatment strip Marginal Net Return (MNR) 
values illustrates the critical need for replication within field 
studies (Figure 4). The data in Figure 4 shows such instances 
where without replication, incorrect conclusions may have  
been drawn. For instance, had only three rate strips from  
block #3 been studied, the producer would have concluded  
that 36 ksds/ac was the optimal rate. However, averaging 
across multiple blocks improves the power of the study, and  
as shown in Table 3, 32 ksds/ac was the optimal economic 
seeding rate for this field based on the statistical analysis.

**Letters for MNR indicate statistical significance in differences for raw or clean data (alpha = 0.1)

* ksds/ac  =  1,000 seeds per acre

R A W  Y I E L D  D ATA C L E A N  Y I E L D  D ATA

Target Seed  
Population 
(ksds/ac)

Avg. Yield  
(bu/ac)

Avg. Yield  
St. Dev. (bu/ac)

Marginal Net  
Return ($/ac) 

 Avg. Yield 
(bu/ac)

Avg. Yield  
St. Dev. (bu/ac)

Marginal Net  
Return ($/ac)

32 237 27 690A 241 18 707A

36 242 30 691A 243 20 695B

40 239 34 663B 244 18 680C

Table 1. Analysis summary 
differences for seeding rate  
study when raw versus clean  
yield data were used.**

Figure 3: Illustration of three 
seeding-rate treatments that have 
been randomized and replicated 
within six blocks across a field.

Target Rate (ksds/ac*)

 32     36     40

Figure 4. Individual MNR data per treatment strips within blocks 
for clean yield dataset.

 32     36     40

Clean yield data: 4 out of 6 blocks indicated 32 ksds/ac would 
have resulted in higher MNR.
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For more information and links to additional resources,  
visit www.unitedsoybean.org/techtoolshed
Technical editing for this publication was led by Joe Luck, Ph.D., Laura Thompson, Yeyin Shi, Ph.D., and Nathan Mueller, Ph.D., University of Nebraska-Lincoln.  
The United Soybean Board neither recommends nor discourages the implementation of any advice contained herein, and is not liable for the use or misuse of the information provided. 
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